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1 Introduction

Lie groups, named after Sophus Lie, span two fields of mathematics as they are groups
that are also differentiable manifolds. The crossover between smooth surfaces and group
operations makes Lie group theory a complex, yet very useful, mathematical theory. For
example, Lie groups provide a framework for analyzing the continuous symmetries of dif-
ferential equations. Many different mathematical objects can be Lie groups, but for the
purposes of this paper we will be focusing on Lie matrix groups.

An example of a Lie matrix group is the orthogonal group. The orthogonal group is
the set of all n × n matrices with non-zero determinant that have the property ATA = I.
The orthogonal group is classified as a Lie matrix group because it satisfies the group axioms
and is an n-dimensional manifold. Geometrically, the orthogonal group represents rotations
in the plane.

This paper works up to the definition of a Lie group by understanding group theory
and investigating Lie algebras. Along the way, we will explore the effects of the flip transpose
on matrices, and will introduce a new group of matrices, the flip transpose group. (The flip
transpose is formed by reflecting along the skew-diagonal.)

In Section 2 we provide key definitions and examples, and we define the matrix groups
that we will later explore. This section also contains an example of a Lie group that will
aid in the understanding of the crossover between manifolds and group theory. Section 3
contains proofs showing that certain sets of matrices are groups. In Section 4 we introduce a
new matrix group, the flip transpose group, and we provide proofs of properties pertaining
to this group. Section 5 introduces a Lie algebra and includes necessary terms, examples and
proofs all relating the matrix groups we are working with. In Section 6 we investigate what
a Lie group is, and in Section 7 we prove that the flip transpose group is a Lie group. Lastly,
in Section 8 we provide further considerations for research in this area of mathematics.

2 Background

The following terms and examples are preliminary to the understanding of this research;
they will lead up to the concept at the center of the research: the Lie matrix group. There
are three main topics of mathematics that will be covered throughout this paper: matrices,
groups, and surfaces.

2.1 Basic Definitions and Examples

The notation Aij will be used often throughout this paper and represents the element
in the i-th row and j-th column of a given matrix A. The notation aij will also be used to
represent the element in the i-th row and j-th column, when convenient.

Definition 1 (Standard Diagonal). The standard diagonal of an n× n matrix is the set of
entries of the form aii where 1 ≤ i ≤ n. The entries on the standard diagonal go from the
top left corner of a matrix to the bottom right corner.
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Definition 2 (Transpose). The transpose of a matrix A with entries aij is the matrix AT

whose entries are aji.

Example 1.

If A =

 1 2 3
4 5 6
7 8 9

 then AT =

 1 4 7
2 5 8
3 6 9

 .
The following properties of transposes are also important to note, as they are useful when

proving theorems and will be utilized often throughout the paper.

Property 1. (AB)T = BTAT

Property 2. (A−1)T = (AT )−1

Property 3. (AT )T = A

Definition 3 (Symmetric Matrices). A matrix is symmetric if it equals its transpose, A =
AT .

Definition 4 (Skew-Symmetric Matrices). A matrix is skew-symmetric if it equals its neg-
ative transpose, A = −AT .

The transpose is an operation on matrices that comes up often in linear algebra. For the
purposes of this paper, we will look at a different type of transposition, the flip transpose, and
the different kinds of symmetries that can exist with this new transposition. The motivation
for looking at the flip transpose comes from a 1997 paper of Reid [5].

Definition 5 (Skew Diagonal). The skew diagonal of an n × n matrix is the set of entries
going from the top right corner of the matrix to the bottom left corner.

Definition 6 (Flip Transpose). [1] The flip transpose of a matrix A with entries aij is
the matrix AF whose entries are an+1−j,n+1−i. The flip transpose of a matrix is formed by
reflecting along the skew-diagonal.

Example 2.

If A =

 1 2 3
4 5 6
7 8 9

 then AF =

 9 6 3
8 5 2
7 4 1

 .
Definition 7 (Persymmetric). [5] A matrix is persymmetric if it equals its flip transpose,
A = AF .

Definition 8 (Per-antisymmetric). [5] A matrix is per-antisymmetric if it equals its negative
flip transpose, A = −AF .

The next important part of the project will focus on group structure, specifically matrix
group structure. Therefore, we need to first understand what a group is and then look at
some specific matrix groups.



RHIT Undergrad. Math. J., Vol. 16, No. 1 Page 103

Definition 9 (Group). [3] A group is a set, G, together with an operation, ·, that combines
any two elements a and b to form another element. To qualify as a group, the set and
operation, (G, ·), must satisfy four requirements known as the group axioms.

• Closure:

For all a, b in G, the result of the operation, a · b, is also in G.

• Associativity:

For all a, b and c in G, (a · b) · c = a · (b · c).

• Identity Element:

There exists an element e in G, such that for every element a in G, the equation
e · a = a · e = a holds.

• Inverse Element:

For each a in G, there exists an element b in G such that a · b = b · a = e.

2.2 Matrix Groups

There exists different matrix groups that coincide with Lie theory, but for the purposes
of this paper we will be investigating the general linear group and orthogonal group in depth.
These two groups provide a template for working with the flip transpose that we are interested
in.

Definition 10 (General Linear Group). [2] The general linear group of degree n, denoted
GLn(R), is the set of all n× n matrices such that the determinant of the matrix is not zero.

Definition 11 (Orthogonal Group). [2] The orthogonal group of degree n, denoted On(R),
is the set of all n× n matrices in GLn(R) such that ATA = I.

We can see that On(R) is a subset of GLn(R) since if ATA = I, then A has an inverse.
Hence detA 6= 0.

We can now prove that these sets of matrices are in fact groups and begin to look at the
new matrix group involving the flip transpose.

3 Proofs for Matrix Groups

Since On(R) is contained in GLn(R), and the general linear group is a group with
respect to multiplication, showing that the orthogonal group is a subgroup of the general
linear group will show that it is a group. We want an understanding of the relationship
between the orthogonal group and the general linear group because the group involving the
flip transpose will work similarly. First, we must understand what a subgroup is.
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Definition 12 (Subgroup). [3] Let G be a group with respect to the binary operation ·.
A subset H of G is called a subgroup of G if H forms a group with respect to the binary
operation · that is defined in G.

The following theorem will provide the conditions that need to be met to be a subgroup.

Theorem 1. A subset H of the group G is a subgroup if and only if these conditions are
satisfied:

(a) H is nonempty.

(b) x ∈ H and y ∈ H imply xy ∈ H.

(c) x ∈ H implies x−1 ∈ H.

Theorem 2. The orthogonal group is a group.

Proof.

(a) This set is nonempty because the identity matrix, In, satisfies the properties of this
set.

(b) Given matrix A and matrix B in On(R), AB must also be in the set. Thus

we show that

(AB)T (AB) = I.

Using Property 1 of the transpose we have

(AB)T (AB) = (BTAT )(AB) = BT (ATA)B = BT IB = BTB = I

as desired.

(c) Given matrix A ∈ On(R), since ATA = I, we need to show that AT is in On(R).

Using Property 3 of the transpose we have

AT (AT )T = I

AT (A) = I

as desired.

The orthogonal group is a subgroup of the general linear group and therefore is a group.
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4 Flip Transpose Group

We now define a new group that will be the focus of this paper. This group is similar to the
orthogonal group, but utilizes the flip transpose operation that was defined in Section 2.

Definition 13 (Flip Transpose Group). The flip transpose group of degree n, denoted Fn(R),
is the set of all matrices in GLn(R) such that AFA = I.

We need to prove two properties of the flip transpose to aid in the proof that Fn(R)
is a group. Specifically, we’ll show that (AB)F = BFAF and (AF )F = A. Before doing so,
however, we need an example to get an understanding of the notation in the flip transpose
group.

Let’s look at a 3× 3 matrix A written with indexed entries, a11 a12 a13
a21 a22 a23
a31 a32 a33


then AF would have the following form a33 a23 a13

a32 a22 a12
a31 a21 a11

 .
The entry a11 moves to the spot a33 in AF , a12 moves to a23, and so on. Our conjecture is
that the new placement takes on the form An+1−j,n+1−i where n is the size of the matrix (3
in this case). If we apply this to a few different entries, we see that it works.

For the entry a11: a3+1−1,3+1−1 = a33.
For the entry a21: a3+1−1,3+1−2 = a32.
For the entry a32: a3+1−2,3+1−3 = a21.

Using the definition of flip transpose that was demonstrated with this example we can
move on to proving the following theorem.

Theorem 3 (Flip Transpose Theorem). For n× n matrices A and B,

(a) (AB)F = BFAF

(b) (AF )F = A.

Proof.

(a) We know that ((AB)F )ij = (AB)(n+1−j,n+1−i).

When expanded,

(AB)(n+1−j,n+1−i) = a(n+1−j),1b1,(n+1−i) + a(n+1−j),2b2,(n+1−i) + . . .+ a(n+1−j),nbn,(n+1−i)
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where a and b represent the individual entries in the matrices A and B respectively.

Let a′ij = a(n+1−j),(n+1−i), to represent AF and let b′ij = a(n+1−j),(n+1−i), to

represent BF .

Therefore,

(BFAF )ij = b′i1a
′
1j + b′i2a

′
2j + . . .+ b′ina

′
nj

= b1,(n+1−i)a(n+1−j),1 + b2,(n+1−i)a(n+1−j),2 + . . .+ bn,(n+1−i)a(n+1−j),n

= a(n+1−j),1b1,(n+1−i) + a(n+1−j),2b2,(n+1−i) + . . .+ a(n+1−j),nbn,(n+1−i)

= ((AB)F )ij

as desired.

Thus, (AB)F = BFAF .

Notice: The multiplication of entries in a matrix is commutative because we are mul-
tiplying real numbers. Hence, we can switch the placement of a and b so that the
product matches the expansion of ((AB)F )ij exactly.

(b) We know that (AF )ij = a(n+1−j),(n+1−i).

Therefore,

(AF )F = (a(n+1−j),(n+1−i))
F

= a(n+1−(n+1−i)),(n+1−(n+1−j))

= aij

as desired.

Thus, (AF )F = A.

We now show that the set of all n× n persymmetric matrices of degree n forms a group.

Theorem 4. The set Fn(R) is a subgroup of the general linear group.

Proof.

Fn(R) is a subset of GLn(R) by definition. Fn(R) contains the identity and

therefore it is nonempty.

(1) Closure:

Let A and B be matrices in this set. Then their product, (AB)F (AB), must be

shown to also be equal to the identity matrix, that is, (AB)F (AB) = I.



RHIT Undergrad. Math. J., Vol. 16, No. 1 Page 107

Left Hand Side

= (BFAF )(AB)

= BF (AFA)B

= BF IB

= BFB

= I

as desired.

(2) Associativity:

Matrix multiplication is associative.

(3) Identity Element:

This set contains the identity matrix, In since (In)F In = In.

Claim: AF = A−1, since AFA = I, we know AF is the left inverse.

Notice: AAFA = A. If we multiply on the right side by A−1, we get AAF = I,

showing AF is also a right inverse and thus AF = A−1.

(4) Inverse Element: Given matrix A ∈ Fn(R), since AFA = I, we need to show

that AF ∈ Fn(R),

AF (AF )F = I

AF (A) = I

as desired.

Therefore, the set of all n× n matrices satisfying AFA = I is a group.

It is also important to notice that Fn(R) ⊆ GLn(R). The flip transpose group satisfies
the three conditions from Theorem 1 that must be met in order to be a subgroup and is
therefore a subgroup of the general linear group. This result will be important later when
we investigate Lie groups.

5 Lie algebras

Before diving into Lie groups, we first need an understanding of what a Lie algebra is and
how it works with the orthogonal group and the flip transpose group.
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Definition 14 (Lie algebra). [2] A R-Lie algebra consists of a vector space a equipped with
a R-bilinear map [, ] : a× a→ a such that for x, y, z ∈ a,

[x, y] = −[y, x], (Skew Symmetry)

[x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0(Jacobi Identity).

To understand the Lie algebra definition, we must understand what a bilinear map is.

Definition 15 (Bilinear Map). [2] A bilinear map is a function combining elements of two
vector spaces to yield an element of a third vector space that is linear in each of its arguments.

Matrix multiplication is an example of a bilinear map because Mn(R)×Mn(R)→Mn(R).
Matrix multiplication is linear in its arguments for the following reasons

M(A,B) = AB

M(A+D,B) = M(A,B) +M(D,B)

M(A,B +D) = M(A,B) +M(A,D)

M(cA,B) = cM(A,B)

M(A, cB) = cM(A,B)

where M is the bilinear map, A,B and D are matrices contained in Mn(R), and c is a
scalar. The bilinear map we use is the commutator of two matrices. Given two matrices
A,B ∈Mn(R), their commutator is

[A,B] = AB −BA.

Before we explore more about the Lie algebras for certain matrix groups, we must un-
derstand what a tangent space is.

Definition 16 (Tangent Space). [2] The tangent space to G at U ∈ G is

TUG = {γ′(0) ∈Mn(R) : γ a differentiable curve in G with γ(0) = U}

where G is a matrix group.

The concepts of a Lie algebra and tangent space go hand in hand. In fact, the notation
g symbolizes both the tangent space and the real Lie algebra. We will show that

g = TIG,

the tangent space to a group of matrices at the identity is a Lie algebra. Since we know a Lie
algebra is a vector space equipped with a bilinear map, we know that the tangent space is
also a real vector space of Mn(R). For each matrix group G, there is a Lie algebra g = TIG.
We look at the Lie algebra of On(R) because the proof is similar to the proof for Fn(R).
Before doing so, we must prove the following theorem, which demonstrates that the tangent
space, g, is a Lie algebra of a matrix group. The theorem and proof are from a 2000 paper
of Baker [2].
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Theorem 5. If G ≤ GLn(R) is a matrix subgroup, then g is a R−Lie subalgebra of Mn(R).

The goal in the following proof is to find what kind of matrices exist in the tangent space,
g, of On(R). We explore On(R) because the property of this group is similar to the property
of Fn(R).

Before doing so, we need an understanding of a definition and proposition that will be
used in the following proof. Both are from a 2000 paper of Baker [2].

Definition 17. The power series, Exp(X), is defined as

Exp(X) =
∑
n≥0

1

n!
Xn.

Proposition 1. For an n× n matrix A and any real number t,

(a) (Exp(tA))T = Exp(tAT )

(b) (Exp(tA))F = Exp(tAF )

(c) Exp(A) ∈ GLn(R) and (Exp(A))−1 = Exp(−A).

Proof. The proof of (a) follows similarly to the proof of (b) (which is below). The proof of
(c) can be found in a 2000 paper of Baker [2].

Proof of (b):

(Exp(tA))F = (I + tA+
(tA)2

2!
+ ...)F

= I + (tA)F +
(t2A2)F

2!
+ ...

= I + (tA)F +
((tA)F )2

2!
+ ...

= Exp(tAF ).

Theorem 6. The tangent space of On(R) is made up of skew-symmetric matrices.

Before proving this theorem, it is important to remember the definition of skew-symmetric
matrices that was provided in Section 2. A skew-symmetric matrix is a matrix that is equal
to its negative transpose, A = −AT . The group of skew-symmetric matrices is notated as
Sk − Symn(R).

Proof. Given a curve α : (a, b) → On(R) satisfying α(0) = I where (a, b) is an interval of
real numbers, we have,

d

dt
α(t)Tα(t) = 0.
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We are taking the derivative of the curve that satisfies the property of the orthogonal group.
It is important to notice that α(t) is a matrix. Using the Product Rule, we have

α′(t)Tα(t) + α(t)Tα′(t) = 0,

which can be simplified to

α′(0)T + α′(0) = 0

since it was given that the curve has the property α(0) = I. Thus we have α′(0)T = −α′(0),
that is, α′(0) is skew-symmetric. Thus,

on(R) = TIOn(R) ⊆ Sk − Symn(R).

The Lie algebra of the orthogonal group is the tangent space to On(R) which is contained
in the set of all n× n real skew-symmetric matrices. On the other hand, say we are given a
matrix A ∈ Sk − Symn(R) and we consider the curve

α : (−ε, ε)→ GLn(R)

such that

α(t) = Exp(tA).

If we apply the property of the orthogonal group we have,

α(t)Tα(t) = (Exp(tA))TExp(tA)

= Exp(tAT )Exp(tA)

= Exp(−tA)Exp(tA)

= I.

This shows that α(t) ∈ On(R). Therefore, we can view this curve as

α : (−ε, ε)→ On(R)

since it satisfies the conditions of the orthogonal group. Since α′(0) = A, we know that A is
in the tangent space and is a skew-symmetric matrix that is in On(R). We can now say that

Sk − Symn(R) ⊆ on(R) = TIOn(R),

so

on(R) = TIOn(R) = Sk − Symn(R).

The Lie-algebra of Fn(R) works similar to On(R).

Theorem 7. The tangent space of Fn(R) is made up of per-antisymmetric matrices.
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Remember that per-antisymmetric matrices are matrices that are equal to their negative
flip transpose, A = −AF . The notation to represent the group of per-antisymmetric matrices
is Per − ASymn(R). The Lie algebra for the Fn(R) is notated as fn(R).
Proof. Given a curve α : (a, b)→ Fn(R) satisfying α(0) = I we have,

d

dt
α(t)Fα(t) = 0,

and so
α′(t)Fα(t) + α(t)Fα′(t) = 0,

implying
α′(0)F + α′(0) = 0

since
α(0) = I and α(0)F = I.

Thus we have α′(0)F = −α′(0), that is, α′(0) is per-antisymmetric.
Therefore,

fn(R) = TIFn(R) ∈ Per − ASymn(R).

We can say that the matrices that make up the tangent space to Fn(R) are contained in the
set of all n× n per-antisymmetric matrices. To show that the tangent space is equal to the
set of n×n per-antisymmetric matrices, we will exponentiate the curve. Consider the curve

α : (−ε, ε)→ GLn(R)

such that
α(t) = Exp(tA).

If we apply the property of the flip transpose group we have,

α(t)Fα(t) = (Exp(tA))FExp(tA)

= Exp(tAF )Exp(tA)

= Exp(−tA)Exp(tA)

= I.

Therefore, we can view this curve as,

α : (−ε, ε)→ Fn(R)

and can conclude that

Per − ASymn(R) ⊆ fn(R) = TIFn(R).

We can now say that the tangent space of Fn(R) consists of per-antisymmetric matrices, or

Per − ASymn(R) = TIFn(R) = fn(R).
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Figure 1: Smooth Maps

6 Lie Groups

Before we state the definition of a Lie group, we need an understanding of some back-
ground terms that are central to the concept of a Lie group.

Definition 18 (Smooth). [2] A continuous map g : V1 → V2 where each Vk ⊆ Rmk is open,
is called smooth if it is infinitely differentiable.

Example 3. Polynomials, sine, cosine and exponential functions are all smooth maps from
R1 → R1 because for any function in those classes there is an infinite number of derivatives
that can be taken.

Definition 19 (Chart). [2] A homeomorphism f : U → V where U ⊆ M , M is a set that
will later be called a manifold, and V ⊆ Rn are open subsets, is called an n-chart for U.

In simpler terms, a chart is a function that takes us from an open set on a manifold to
an open set in Rn. A collection of charts is called an atlas. Charts and atlases are used
often when working with manifolds because we need to take sets into spaces where we can
perform operations, such as taking derivatives. Figure 1 demonstrates two different charts,
each coming from open subsets of a manifold to R2.

Definition 20 (Manifold). [2] A smooth manifold of dimension n is denoted by (M,U, F )
where M is the set of points or space we are working with, U is the open covering in the
space, and F is a chart or collection of charts.

For the purpose of this paper, the points in a given space we are working with are matrices
and the charts are maps taking us from manifolds into Rn.
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Example 4. One example of a manifold of dimension 2 is the unit sphere in R3. The open
sets are the 6 open hemispheres with a pole on an axis. The charts are the standard projection
to the disk. i.e. if U is the upper open hemisphere then f(u, v,

√
1− u2 − v2) = (u, v).

Now we define a Lie group.

Definition 21 (Lie Group). [2] Let G be a smooth manifold which is also a topological
space with multiplication map mult: G × G → G and inverse map inv: G → G and view
G×G as the product manifold. Then G is a Lie group if mult, inv maps are smooth maps.

Our goal is to show that the flip transpose group is a Lie group. Since the flip transpose
group is a subgroup of the general linear group, we need to first show that the general linear
group is a Lie group. Once we show this, we use definitions and theorems that will guide
us towards Fn(R) as a Lie group. The ideas in the following proof are from a 2000 paper of
Baker [2].

Theorem 8. The general linear group is a Lie group.

Proof. [2] We want to show that GLn(R) is a Lie group. First, GLn(R) ⊆ Mn(R) is an
open subset. This can be seen by noticing the determinant map, det : GLn(R) → R, is a
continuous function since it is a polynomial in the entries of the matrix. Also, notice that
GLn(R) = det−1(R′{0}). Since R′{0} is open and the determinant is continuous, we have
GLn(R) is open. For charts we can take the open sets U ⊆ GLn(R) and the identity function
Id: U → U. The tangent space at each point A ∈ GLn(R) is just Mn(R), so the notion of
tangent space that we have previously discussed agrees here. The multiplication and inverse
maps are smooth as they are defined by polynomial and rational functions between open
subsets of Mn(R). Therefore, GLn(R) is a Lie group.

The following definitions and theorem, both from a paper of Baker [2], will allow us to
show that the orthogonal group and the flip transpose group are Lie groups.

Definition 22 (Lie Subgroup). [2] Let G be a Lie group. A closed subgroup H ≤ G that
is also a submanifold is called a Lie subgroup of G. It is then automatic that the restrictions
to H of the multiplication and inverse maps on G are smooth, hence H is also a Lie group.

This definition is providing a shortcut to proving that subgroups of the general linear
group are Lie groups. If we can show that the matrix groups are subgroups of GLn(R)
(which was done in Section 3) and also show that they are submanifolds, then we know they
are Lie subgroups. When shown to be a Lie subgroup, it automatically follows that it is a
Lie group. So first, we define a submanifold.

Definition 23 (Submanifold). [2] Let (M,U, F ) be a manifold of dimension n. A subset
N ⊆ M is a submanifold of dimension k if for every p ∈ N there is an open neighborhood
U ⊆M of p and an n-chart f : U → V such that

p ∈ f−1(V ∩ RK) = N ∩ U.
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Figure 2: Submanifold

Example 5. The image in Figure 2 demonstrates how a submanifold works. In this example,
the sphere is the manifold and the equator N is a subset of the sphere. We see that the
darkened line segment of the equator N in the open set U around the point p represents
N ∩ U, which is also f−1(V ∩ RK). Therefore, the equator is a submanifold of the sphere.

Now we know that we need to show that the orthogonal group and flip transpose group
are submanifolds of the general linear group. The following theorem tells us how we can go
about this.

Theorem 9 (Implicit Function Theorem for Manifolds). [2] Let h : (M,U, F )→ (M ′, U ′, F ′)
be a smooth map between manifolds of dimension n, n′. Suppose that for some q ∈M, dhp :
TpM → Th(p)M

′ is surjective for every p ∈ N = h−1q. Then N ⊆ M is a submanifold of
dimension n− n′ and the tangent space at p ∈ N is given by TpN = ker dhp.

Therefore, for us to show that a matrix group is a submanifold, N, we need to show that
the derivative of the map F : GLn(R)→ Rn is surjective for every point p in the submanifold
N, where N = F−1(q) for some q in Rn.

Let’s first look at the orthogonal group. The ideas in the following proof come from a
2000 paper of Baker [2]. Before proving it, however, let’s look at a 2× 2 matrix that has the
property ATA = I. Recall that On(R) is the solution set of a family of polynomial equations
in n2 variables arising from the matrix equation ATA = I. For a 2× 2 matrix we have

A =

[
a b
c d

]
so AT =

[
a c
b d

]
.

So,

ATA = I :

[
a c
b d

] [
a b
c d

]
=

[
1 0
0 1

]
.



RHIT Undergrad. Math. J., Vol. 16, No. 1 Page 115

Multiplying these matrices yields 4 expressions in 4 variables

F (A) =


a2 + c2 − 1
ab+ cd
ab+ cd

b2 + d2 − 1


where F is the map that is taking the matrix A as its input and giving a vector containing
the resulting polynomial expressions as its output.

We notice that the second and third expressions are the same, so we can eliminate one
of those expressions and will be left with 3 expressions. No matter the size of n, expressions
will repeat. In fact,

(
n+1
2

)
unique expressions will exist. Now we want to find the Jacobian

for the map of F (A) : GLn(R)n → Rn, which is dFA. To do so, we will use the following
theorem and proposition as used in a 2000 paper of Baker [2].

Proposition 2 (Identity Check Trick). [2] Let G ≤ GLn(R) be a matrix subgroup, M a
smooth manifold and F : GLn(R)→ M a smooth function with F−1q = G for some q ∈ M.
Suppose that for every B ∈ G,F (BC) = F (C) for all C ∈ GLn(R). If dFI is surjective then
dFA is surjective for all A ∈ G and ker dFA = Ag.

To use this proposition, we need to first prove that the hypothesis is true. In other words,
we need to show that for every B ∈ G,F (BC) = F (C) for all C ∈ GLn(R). The map we
are working with, F , means we are applying the condition of the orthogonal group, which
means F (BC) and F (C) are formed from the equations (BC)T (BC) = I and CTC = I,
respectively.
Proof. We want to show that F (BC) = F (C), or (BC)T (BC) = I = CTC.

(BC)T (BC) = CTBT (BC) = CT (BTB)C = CT (I)C = CTC = I

as desired.
This proof works in the exact same manner when the flip transpose is applied, meaning

that we will be able to use this fact in Section 7 to look at the Jacobians created from the
equations that arise from the matrix equation AFA = I. Using this proposition, we can find
the Jacobian at the identity matrix for our 2× 2 ∈ On(R),

dFI =

 2 0 0 0
0 0 0 2
0 1 1 0

 .
We can see that there is a pivot in each row, meaning the matrix is surjective. After

seeing how to work with the equations for the 2× 2 matrix case, we can move on to proving
this fact for any size matrix A.

Theorem 10. The orthogonal group is a submanifold.
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Proof. All polynomial equations created from the matrix equation ATA = I will have one of
the two following forms

n∑
k=1

a2kr − 1 = 0 (1 ≤ r ≤ n)
n∑

k=1

akraks = 0 (1 ≤ r ≤ s ≤ n).

Remember that F is the map we are working with. This map has a matrix as its input
and a vector as its output. We want to find a matrix that encompasses all of the possible
expressions that will arise from ATA = I, which will be referred to as the general form of
the function. The general form of the function for any size matrix A is as follows

F (A) =



n∑
k=1

a2k1 − 1

...
n∑

k=1

a2kn − 1

n∑
k=1

ak1ak2

...
n∑

k=1

ak1akn

...
n∑

k=1

ak(n−1)akn



.

Notice that the orthogonal group is the set of solutions to

F (A) =



0
0
0
0
...
0


.

All of the equations that arise from the matrix equation are equal to 0. In other words, the
inverse image of the zero vector gives all the matrices in On(R). This is important because
it satisfies the hypothesis of the Identity Check Trick. This will work similarly for Fn(R).

To show that dFA will be surjective for any matrix A ∈ On(R), we will again use the
Identity Check Trick. In other words, it is sufficient to check the case when A = I to create
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the Jacobian

dFI =



2 0 0 0 · · · 0 0
0 2 0 0 · · · 0 0
...

. . .
...

...
0 0 0 0 · · · 0 2
0 1 1 0 · · · 0 0
...

. . .
...

...
0 1 0 · · · 0 1 0
... . . .

...
...

0 0 0 · · · 1 1 0


.

The rank of the matrix is
(
n+1
2

)
, which is the number of expressions that were used to create

each row. Therefore, dFI is surjective. Since On(R) is a subgroup and a submanifold of
GLn(R), we can say that it is a Lie subgroup and hence a Lie group.

7 Flip Transpose Groups are Lie Groups

To show that Fn(R) is a Lie group, we work in a similar manner to the proof of On(R).
Before finding the general form of the function, F (A), and the Jacobian, dFI , we need to
work with some different sized matrices to find the pattern of equations that arise from
AFA = I. Let’s begin with a 2× 2 matrix

A =

[
a b
c d

]
, so AF =

[
d b
c a

]
.

Setting AFA = I, we get
(
2+1
2

)
= 3 expressions

F (A) =

 ad+ bc− 1
2ac
2bd

 .
Using the Identity Check Trick, we can create the Jacobian

dFI =

 0 2 0 0
0 0 2 0
1 0 0 1

 .
We notice that this matrix has a pivot in each row and is therefore surjective. To help us
gain an understanding of the pattern in the matrix, we repeat this process but use the indices
of each entry in the matrix. If

A =

[
a11 a12
a21 a22

]
then AF =

[
a22 a12
a21 a11

]
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and our three equations become

a22a11 + a12a21 = 1, 2a11a21 = 0, and 2a22a12 = 0.

In general the equations take on one of the following three forms

n∑
k=1

an+1−k,1ak,1 = 0
n∑

k=1

an+1−k,2ak,2 = 0
n∑

k=1

an+1−k,2ak,1 − 1 = 0.

Notice that the index n+1−k is arising again in our study of the flip transpose group. This
index originally arose when we were proving properties of Fn(R) in Section 4.

Let’s now look at the 3× 3 case when

A =

 a b c
d e f
g h i

 and AF =

 i f c
h e b
g d a

 .
Setting AFA = I, we get

(
3+1
2

)
= 6 expressions

F (A) =


2ag + d2

2bh+ e2 − 1
2ic+ f 2

ha+ ed+ bg
ib+ fe+ ch

ia+ fd+ cg − 1

 .

Using the Identity Check Trick, we create the Jacobian

dFI =


0 0 2 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 2 0 0
0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 0 0 1

 .

We see again that the Jacobian has a pivot in every row and is therefore surjective. We also
see that the equations that arise from the matrix equation AFA = I all equal 0, meaning
that if we take the inverse map, F−1, we will get all matrices in Fn(R). After using indexed
entries again, we can generalize the equations into the following forms

n∑
k=1

an+1−k,1ak,1 = 0
n∑

k=1

an+1−k,2ak,2 − 1 = 0
n∑

k=1

an+1−k,3ak,3 = 0

n∑
k=1

an+1−k,2ak,1 = 0
n∑

k=1

an+1−k,3ak,1 − 1 = 0
n∑

k=1

an+1−k,3ak,2 = 0. (1)
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We begin to see that when the second components of each of the terms in the summation
sum to n + 1, the equations in (1) are subtracting one. This observation will be important
when creating the general form of the function.

To arrive at a general form of the function for the polynomial equations created from the
matrix equation AFA = I, we repeat these steps for a 4×4 matrix hoping to get summations
similar to the ones that came from working with the indexed entries of the 2× 2 and 3× 3
matrix cases. We first find the Jacobian using the Identity Check Trick. The Jacobian yields
the same pattern as those that we found before

dFI =



0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


.

We notice that there are n 2’s in the top 4 rows of the matrix and they are spaced 2
columns apart. This matrix is also surjective, meaning the 4 × 4 matrices in Fn(R) form a
Lie group. When we use indices for the 4× 4, we begin to see a pattern in the summations
that can be created from the polynomials that are arising. After repeating these steps for
the 5 × 5, we find the same pattern. We can see that the following matrix expresses the
polynomials that arise from AFA = I for any matrix A,

F (A) =



n∑
k=1

an+1−k,1ak,1
n∑

k=1

an+1−k,2ak,2

...
n∑

k=1

an+1−k,nak,n
n∑

k=1

an+1−k,2ak,1

...
n∑

k=1

an+1−k,iak,j

...
n∑

k=1

an+1−k,nak,n−1


where i>j and i+ j = n+ 1 when the expression is subtracting 1.
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The Jacobian matrix of F at A = I is the
(
n+1
2

)
× n2 matrix dFI . To show that dFI is

surjective for any A ∈ Fn(R), we will use the following argument.
One way for the Jacobian to always be surjective is that there needs to be exactly one

non-zero entry in every column and at least one non-zero entry in every row. The Jacobians
created for the 2× 2, 3× 3, and 4× 4 all exhibited these two ideas, hence there was a pivot
in every row and the matrix was surjective. We have noticed that in the top block of each
Jacobian there are n 2’s. For the top block of any Jacobian, in any one equation, one unique
diagonal entry (aii) shows up twice (if n is even) or is squared (if n is odd). Hence when
we take the derivatives at the identity, we get 2’s. For the bottom block of the Jacobian,
which has a random pattern of two 1’s in every row, in any one equation, there will be two
diagonal entries that show up only once. To back up this argument, we will use the above
matrix to model various patterns of equations that will arise in any size matrix A. If we look
at the first equation that will always arise,

n∑
k=1

an+1−k,1ak,1

and we make k = 1, we get an1a11, so we have a diagonal entry, a11. For our argument to
stand, this entry needs to show up only one more time in this equation, and that happens
when k = n, because we get a11, an1.There are no other values of k that will cause this
diagonal entry to arise in the equation. This is where our 2 would come from. If we move
to the bottom block, where the first equation is of the form

n∑
k=1

an+1−k,2ak,1

we need to show that in any one equation exactly 2 diagonal entries show up only once.
Suppose k = 1, then we have an2a11. If we let k = n − 1, we have a22an−1,1. We see that
we get 2 different diagonal entries, a11 and a22 that will not show up again in that equation.
Upon repeating this process for various equations with various values of k, the argument
stands. Therefore, there will be at least one non-zero entry in every row. For every column
to have exactly one non-zero entry, each variable is only ever once multiplied by the aii entry.

Since Fn(R) ≤ GLn(R) and Fn(R) is a submanifold, it is a Lie subgroup. We can conclude
that the flip transpose group is a Lie group.

8 Further Considerations

The work that has been done in this paper shows that the flip transpose group is a Lie group.
As far as we know, this matrix group has not been looked at in depth before. Since Fn(R)
is a Lie group, but not immediately recognizable as a standard Lie group, possible further
work with Fn(R) could be aimed at investigating which classification this new matrix group
would fall under.
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